According to the Food and Agricultural Organization of the United Nations, approximately 795 million people go undernourished daily. That’s about one in nine people—a staggering statistic. Even more shocking is that the world is producing more than enough food to feed the entire population, but one third of food produced is wasted, often due to spoilage.

When Materials Science and Engineering alum James Rogers (B.S. MSE, BME, ‘07) learned of this alarming reality, he decided to make a difference. “It’s shocking that we are throwing away so much produce. By some reports, fifty percent here in the United States is lost!” says Rogers. “So I thought, ‘what is causing this produce to spoil?’”

The answer brought memories of Rogers’ undergraduate materials science courses flooding back to him. The two primary causes of produce spoilage, oxidation and water loss, also cause iron to rust. At Carnegie Mellon, Rogers learned how scientists created stainless steel to be rust resistant: they add specific kinds of atoms into the iron so that the atoms react with oxygen on the iron’s surface to form a thin protective barrier.

“The question became, ‘Can we solve the oxidation problem for produce the same way that the challenge was solved for stainless steel, by creating a thin barrier on the outside of the produce,’” explains Rogers.

I would certainly be at a different place in my life if I didn’t go to Carnegie Mellon.

James Rogers, MSE alum, Carnegie Mellon University

The result from his inquiry was an edible barrier that increases the shelf life of produce two to five times. Made entirely from unused plant materials, the protectant is natural, clear, tasteless, and odorless. This technology is the backbone of Rogers’ company, Apeel Sciences, which is based in Santa Barbara, California. Roger founded the company in 2012 while finishing his Ph.D. in Materials Science at University of California, Santa Barbara.

This increase in shelf life can have a huge impact in developing countries where inadequate infrastructure and no access to refrigeration makes it difficult to keep produce fresh. Rogers is currently working to take the technology that he developed for fruits like strawberries and tailor it to crops relevant in developing countries in South America and sub-Saharan Africa. His first target is cassava, a large root vegetable that is a staple in the diet of millions of people in the developing world. Unfortunately, cassava only has a shelf life of about 48 hours, which makes the storing and transporting of cassava difficult. With a $1.5M grant and valuable mentoring from the Bill and Melinda Gates Foundation, Rogers and his team have begun working with the root to extend its shelf life and provide better nutrition to some of the world’s poorest communities and access to market.

“Carnegie Mellon provided me with a broad exposure to a diversity of problems and a fundamental understanding of the underlying concepts of materials science,” says Rogers. “When I got to graduate school, I discovered this problem of produce preservation, but I already had the vocabulary and core understanding that was developed during my undergraduate studies. I would certainly be at a different place in my life if I didn’t go to Carnegie Mellon.”