Carnegie Mellon Engineering




The Titan 80-300: Pushing the Limits of Nanotechnology

For nanotechnology researchers, thinking big starts by thinking small.

That sometimes means examining a piece of a material that's tens of thousands of times thinner than a human hair to explore its inherent structural perfection or flaws. The ability to "see" materials at these infinitesimal scales is generally limited by the magnification capabilities of the available microscope technology.

 

With A Little Help From Our Friends

The Titan 80-300Thanks to substantial gifts from PPG Industries and the Gordon and Betty Moore Foundation, Carnegie Mellon will purchase a Titan 80-300, one of the world's most powerful, commercially-available microscopes. The instrument, which is only built to order and will be one of only seven in the United States, will be housed at Carnegie Mellon's Center for Nano-Enabled Device and Energy Technologies (CNXT). The Titan's advanced capabilities will enable Carnegie Mellon researchers to push the boundaries of nanotechnology, and help to make magnification restrictions a thing of the past.

"The upgrade to the Titan microscope is like the difference between a 1940's Ford and a Ford made today in terms of the instrumentation and capabilities," said Elias Towe, Carnegie Mellon professor and director of CNXT.

 

Breaking the Magnification Barrier

In recent years, nanotechnologists have been hitting the resolution limits imposed by available microscope technology. The most powerful transmission electron microscopes and scanning electron microscopes have not been able to produce high-resolution images at the sub-Angstrom level. The Titan will allow researchers to break that magnification barrier.

Because the properties of a material depend on the detailed arrangement of its atoms, nanotechnology can answer pressing questions about a material's atomic structure, which ultimately dictates its potential utility, strengths, and durability. For example, carbon atoms arranged one way produce coal; arranged another, and they produce diamonds. Carnegie Mellon researchers aren't attempting to make diamonds from coal, but they are interested in learning how to influence the stacking of clusters of atoms in materials to obtain desired properties. They will also begin to understand what they cannot influence to better appreciate the structure of various materials. This type of research has far-reaching implications in everything from biomedicine and chemical engineering to energy technologies.

As one of the world's premier research universities, Carnegie Mellon expects that the addition of the Titan 80-300 will enable even more industry partnerships. Although the microscope's price tag makes it cost-prohibitive for even the largest companies, the university and CNXT look forward to hosting and collaborating with organizations that would benefit from the Titan's sophisticated capabilities.

 

~ By Douglas Phillips

Image courtesy of FEI