NT-MDT Spectra

Raman Manual

By Logan Solotky

lsolotky@andrew.cmu.edu

Contents

Loading Sample	1-4
Starting Nova Px for Raman	5-6
Spectra Acquisition	7-14
Analysis Settings	15-22
Calibration Procedure	23-24

Loading Sample

- The piezo stage is magnetic as well as the 3mm spacers (Figure 1)
- Samples should be mounted on the steel discs in the lab using double sided carbon tape or some other adhesion method

Figure 1: Magnetic spacer and magnetic piezo stage

• To insert the sample, the optical head must be removed. <u>This must be done carefully or the</u> <u>instrument could be damaged.</u>

Figure 2: Optical head

• Lower the stage to the lowest point using the z control (Figure 3)

Figure 3: Z height control and optical head legs

• Grab the optical head by the upper sides (Figure 4)

Figure 4: Optical head sides circled in white

- Pivot the optical head on the front left leg (Figure 3)
- Rotate the optical head 90 degrees
- Carefully place on table
- With the optical head off, the sample can be carefully placed on the 3mm magnetic spacer (Figure 1), <u>it is important to slide the sample from the side and not set directly down on the spacer</u>. Since it is magnetic, the hard downward force could damage the piezo ceramic in the stage.
- To put the optical head back place the front left leg back on its post (Figure 3) and carefully rotate the head back in place. Make sure to have a good view of the distance between the sample and the optical head to make sure that it clears the sample.

Starting Nova PX for Raman Analysis

• Start Nova PX

Nova Px 3.4.0 rev. 16825		COLUMN TWO IS NOT	
View Tools Help SemiContact - 🙀 Mag1 - 0.00 S	etPoint, nA 5.000 💲 🎬 Off 👻 Gain 1.00 🗘	Pass 1 7 7 XV1 BV 0.00 \$ PMT_E 0.00 \$	
Data Aiming Resonance Approach	≝ <u>î</u> V ≫ Scanning Curves Spectra Oscillos	cope Schemes Camera SPM Ok SPM Init SofAppr	532 nm 633 nm Stop
Reglam Params Mem Buff Oscil ExComm Macro	Debug SchemeF Movers Filters I2C Par List	CurveDbg PGA ex 🔻	
Log: - SPMStatus: SPM Ok			at.

Figure 1: Nova PX start up screen

The following menu should pop up

• Click Full (Figure 2)

🧿 Full

• Click Start (Figure 2)

When finished, it should look like Figure 3, keep in mind this will take a while

Nano30 Pre-starting
ND filter OKI Beam Expander OKI Half Wave Plate OKI Beam Splitter OKI Objective XYZ OKI
Collective X12 OK! Pinhole OK! Bandpass Filter OK!
Polarizer OK! Objective XYZ OK!
Pinhole OKI
Exit Slit OK!
Change of grating OK!
Type of pre-starting procedure
Image: Second secon
Start Next

Figure 3: Precheck finished, instrument is ready

If anything comes up red, please contact me and don't use the instrument

💠 Next

• Click Next (Figure 3)

Spectra Acquisition

Yiew Tools Help SemiContact Yiew Tools Help SemiContact Yiew Tools (Pass) Pass) <	» Stop
Data Aiming Resonance Approach Scanning Curves Spectra Oscilloscope Schemes Camera	
Reglam Params Mem Buff Oscil ExComm Macro Debug ScherneF Movers Filters 12C Par List CurveDbg PGA ex 🔻	
i - V Log - SPMStatus: SPM Ok	н

Figure 1: Nova Px main screen

532 nm

633 nm

- Select desired laser for analysis (Figure 1).
 - Click on wavelength desired and follow the prompts.
 - Enter a value in wavenumbers to center the spectral window
 - Click yes or no to open the laser shutter

N Spectra			X
SPECTROMETER	Detector for scan :	AndorCCDDetec	tor 🔻
Andor iDus: Regions Region 0: 0.00 · 0.00 Functions			
Nº Units Left Right Sub1 Sub2 Image: Constraint of the subscript of	Title		_
Pixels nm 1/cm Width			
Peak Value Pixels nm 1/cm Peak Position			
Skewness Value			
□ Subtract =			
Save As Background Subtract Background Full Spectrum Recording OPTIONS			
Shift Speed V: [8,25 V] H: [0.033 (A-D N V]			
Laser: 632.800 Central Pix: 529			
Image Track V. bin Center: 63 VWidth: 126 Crop Mode Count: 1 Acquisition Mode Single Scan			
Acquisition time = 20.09590 Exposure Time 20.000010 s Min = 0.000030 s Set T (°C) 20 Cooler= 23.9			
Live Mode Single Scan Wave Length (nm) 🔻 🖬 🖞 🛱 Graphs : Spectr — 🗸 🕀 🗨 🗮 🕎 🚺 🏹 🐴 🎊			
I 100 100 100 100 100 100 100 100 100 10			
671.0 671.5 672.0 672.5 673.0 673.5 674.0 674.5 675.0 675.5 676.0 676.5 677.0 677.5 678.0	678.5 679.0 6	579.5 680.0	680.5
671.0 671.5 672.0 672.5 673.0 673.5 674.0 674.5 675.0 675.5 676.0 676.5 677.0 677.5 678.0 Wave Length, nm	01010 01910 0	JY5.3 000.0	000.5

Figure 2: Main Spectra menu with acquisition parameters

- The CCD detector needs to cool to a range of (-60 to -65) enter -65 in the Set T box (Figure 2).
 Set T (°C) 20 Cooler= 23.9
- Enter the proper laser wavelength in nm in the Laser box (Figure 2).
 - For the 532nm green laser the correct value is 532.2nm
 - For the 633nm red laser the correct value is 632.8nm

- Turn on optical camera (Figure 1).
- Click the triangle in the center of the screen (Figure 3).

Laser: 632.800

Figure 3: Optical camera

- To view the sample, set the mirror wheel (Figure 5) to "None". There is a tube coming off the back of the mirror box, on the back of the that tube is a switch that turns on the optical light. Make sure the light is on.
- If the sample is homogenous and spatial reference is not important, its ok to skip to step 10
- For samples that are reflective, it should be easy to see the surface of the sample, for samples that are less reflective, increase the brightness by selecting this button (Figure 4).
- Make sure the AFM laser is off (Figure 1). If it is on it will look like (Figure 4).

Figure 4: Example of a reflective sample

• There are two ways to center the laser on a specific spot on a sample

- Move the X and Y controls for the stage (Figure 5) to position a spot under the cross hairs. (Figure 4)
- On the back of the mirror box there are two black knobs. That can be used to adjust the mirror position and move the laser without having to move the sample.

Figure 5: Overview of raman setup

• Set the mirror to 100%. Coarsely focus the laser on the sample starting with the Z height control (Figure 5). It should look like Figure 6 and then using the fine focus on the optical head (Figure 5) focus the laser to a point (Figure 7).

Figure 6: Laser is out of focus but close enough to switch from Z height control to fine focus

Figure 7: This is the laser focused on the sample

• Make sure spectrometer shutter is open (Figure 8).

- Make sure the desired grating is selected (Figure 8).
- Once the desired wavelength and grating have been selected the instrument must be calibrated, this must happen every time the laser or grating is changed. (See Calibration section for more detailed instructions)

🗫 Nano 30			
1.Entrance	2.E	xcitation	3.Reflection
4.Registration	Sr	pectrometer	Microscope
Shutter			Closed
Exit Port		CCD	•
Exit Slit		10	💌 um
Grating		Grating 75	/echelle 🔻 🕨
Wavelength 675.9999	nm ()		
Order: 35		Max: 724	.077
Goto ▼ ResGo ▼ Max WL 25342.695 D, nm/mm 0.337			
Set All			

Figure 8: Spectrometer settings

- Select the wavelength to center the spectral window on, this is done by entering a value under "Wavelength" and clicking "Goto" or "ResGo" (Figure 8).
- Set the desired instrument settings for analysis (for more detail see analysis settings).
- Click "Single Scan" (Figure 9).
 Single Scan

Spectra			x
SPECTROMETER	Detector for scan :	AndorCCDDetector	•
AndoriDus: Regions Region 0: 0.00 - 0.00 Functions			1
Nº Units Left Right Sub1 Sub2 Pixels nm 1/cm Mass Centre	Title		
Pixels nm 1/cm Width			
Peak Value			
Pixels nm 1/cm Peak Position			
Skewness Value			
□ Subtract			
Save As Background Subtract Background			
Full Spectrum Recording OPTIONS			
Shift Speed V: 8.25 - H: 0.033 (A-D N -			
Laser: 532.100 Central Pix: 538			
۲ ()			
Image Track V. bin Center: 63 🗘 Width: 126 🗘 Crop Mode Count: 1 🗘 Acquisition Mode Single Scan 🔻			
Acquisition_time = 5.095900 Exposure Time 5.000000 s Min = 0.000030 s Set T (°C) -65 Cooler=-65.0			
Live Mode Single Scan Raman Shift (1/cm) 👻 🖳 🕼 🗱 Graphs : Spectr— 👻 🕀 🗨 🗮 📑 👫 🏹 🕅 🗱			
R			
S0 %			
1 Martin Martin	ſ		
	500 1800	2000 2200	

Figure 9: Highlighting single scan and save spectrum icons

- If there is no spectrum, then make sure that the camera shutter is **open**.
- To save the spectrum, click the floppy disk icon (Figure 9).

Shut Down Procedure

- 1. Close shutter to the camera
- 2. Warm camera to 15 degrees
- 3. Once camera reaches 15 degrees, close software shut off spectrometer

Analysis Setting

- The first setting to consider is the laser wavelength (λ). In general it is usually best to use the smallest λ as possible. Both the signal and spot size are optimized with smaller λ. If a sample is prone to fluorescence, then a longer λ can help reduce the fluorescence.
- In general, the grating will be the main settings that will be used to control spectral resolution, such that the more groves on the grating the better the resolution but also restricting how much of the spectrum can be viewed at one time along with an increase in spectral noise. The exception to this rule is with the 75/echelle grating this is a specialized grating that offers the highest spectral resolution of the instrument.

🐉 Nano 30		
1.Entrance	2.Excitation	3.Reflection
4.Registration	Spectrometer	Microscope
Shutter		Closed
Exit Port	CCD	•
Exit Slit	10	💌 um
Grating	Grating 75	/echelle 🔻
Wavelength 675.9999	nm (• •
Pedage 25	Mar. 704	077
Goto	-	ResGo 👻
Max WL 2034	2.695 D, nm/mn	n U.337
	Set All	

Figure 1: Spectrometer setting menu

- Select the desired grating from the drop-down menu and click "Set All" (Figure 1).
 Grating 75/echelle
- Select the wavelength that you would like your spectrum to be centered this is done by entering a value under "Wavelength" and clicking "Goto" or "ResGo" (Figure 1).
 - a. "Goto" will change the position of the spectrometer from where it is currently to where

you set it Goto

b. "ResGo" will reset the spectrometer to the 0 position before moving to the set position, this is the most accurate way to set it

Keep in mind that the raman shift that we are measuring is greater than the excitation wavelength of the laser, for example if you set it to 632.8 when using the 632.8 laser you will have centered the spectrum at 0 cm-1 in wavenumbers.

- Once the desired wavelength and grating have picked the instrument must be calibrated, this must happen every time the laser or grating are changed. (See Calibration section for more detailed)
- Picking a ND (natural density) filter setting; the setting is on a relative scale from 0 to 3, 0 is the strongest laser power and 3 is the weakest (Figure 2). Remember dark samples and organic samples can be burned by the laser, and the longer the *λ* the higher the absorption of energy.

🐎 Nano 30		
1.Entrance	2.Excitation	3.Reflection
4.Registration	Spectrometer	Microscope
ND filter	0	
step: 1	ŀ	
Beam Expander	632.8 nm 5 mm 🔹 🕨	
Half Wave Plate	Plate 633 nm 🔹 🕨	
Beam Splitter	632.8 nm	• •
Polarizer	pos7	-
Set All		

Figure 2: Excitation settings menu

Here we can set the step size of each increment of change on the ND filter and then click the arrows to increase or decrease the filter. Or we can just type in a value between 0 and 3 and click "Set All".

Set All

Generally speaking the higher the laser power the better the signal to noise to demonstrate (Figures 3-5); here are 3 spectra with the same acquisition parameters except for the ND filter notice the difference in noise and overall counts.

Figure 3: ND filter of 0 which is 100% laser power

Figure 5: ND filter of 2

• Next we can also control signal strength and peak width by adjusting the pin hole under the Registration tab (Figure 6).

🗫 Nano 30		
1.Entrance	2.Excitation	
3.Reflection	4.Registration	
Spectrometer	Microscope	
Bandpass Filter	pos1 🔹 🕨	
	Pos1 V	
Objective XYZ	632.8 nm 🔻 🕨	
Pinhole	100 💌 um	
Set All		

Figure 6: Registration setting menu

Keeping all acquisition parameters the same other than the registration pin hole we can notice a large difference in our spectrum (Figures 7-10).

Figure 10: Pin hole of 250um

Notice how 100um provided the highest counts, low noise, low fluorescence and maintained narrow peaks. It is important to experiment with this parameter as it will vary from sample to sample.

• Another parameter that has a big effect on our spectrum is exposure time. In most cases the longer the exposure time the better the signal to noise ratio is and the higher the counts, but this can cause an increase in fluorescence depending on the sample

Spectra			
	scan: AndorCCDDetector 🔹		
Andor iDus:			
Regions Region 0: 0.00 - 0.00 Functions Functions Functions Functions			
Image: Construction Area Image: Construction Function Function Function Function Title			
Pixels nm 1/cm Width			
Peak Value			
Pixelsnm1/cm Peak Position			
Skewness Value			
Subtract =			
Save As Background Subtract Background			
Full Spectrum Recording OPTIONS			
Shift Speed V: 8.25 - H: 0.033 (A-D N -			
Laser: 532.100 Central Pix: 538			
× v			
Image Track V. bin Center: 63 Crop Mode Count: 1 Acquisition Mode Single Scan			
Acquisition time = 5.095900 Exposure Time \$,000000 s kin = 0.000030 s Set T (°C) -65 Cooler=-64.3			
Live Mode Single Scan Raman Shift (1/cm) 🗸 🖬 🖉 📾 Graphs : Spectr — 🗸 🛟 🕄 🤤 👼 📗 🗔 🖓 🎊			
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
-600 -400 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200			
Raman Shift, 1/cm			

Figure 11: Exposure time

Exposure time can be change by entering in a value in the box and pressing enter (Figure 11).

Exposure Time 0.500020 s

Take note of the three spectra below all parameters are held constant other than exposure time (Figures 12-14).

Figure 12: Exposure time of 0.5s

Figure 14: Exposure time of 5.0s

• There also is an option for acquiring more than 1 spectrum and integrating them together this

Single Scan

Accumulate Stitching Kinetic

N: 10

•

can be found under accumulate ((Figure 11)
---------------------------------	-------------

Enter in how many accumulations are needed (Figure 15).

As well as exposure time for each accumulation, keep in mind the minimum cycle time (Figure 15).

Cycle Time 5.102000 s is also dictated by the minimum exposure time, meaning the exposure time can't be higher than the cycle time.

Spectra		X		
SPECTROMETER Detector for scan : And	orCCDDetector	•		
Andor iDus: Regions Region 0: 0.00 - 0.00 Functions				
Regions Region 0: 0.00 · 0.00 Functions Functions Functions Functions				
Image: Construction Area Image: Construction Funct/nits Title				
Pixels nm 1/cm Width				
Peak Value				
Pixels nm 1/cm Peak Position				
Skewness Value				
Subtract				
Save As Background Subtract Background				
Full Spectrum Recording OPTIONS				
Shift Speed V: 8.25 V H: 0.033 (A-D N V				
Laser: 532,100 Central Pix: 538				
< v				
Image Track V. bin Center: 63 🗘 Width: 126 🗘 🗆 Crop Mode Count: 1 🗘 Acquisition Mode Accumulate 🗸 N : 10 Cycle Time 5. 102000 s				
Acquisition time = 51.02362 Exposure Time 0.500020 s Min = 0.000030 s Set T (°C) -65 Cooler=-64.3				
Live Mode Single Scan Raman Shift (1/cm) 🔻 🖬 🖉 🗰 Graphs : Spectr- 🗸 💠 🗨 🗨 🤤 🌉 🗔 🗍 🏹 🏹 🕅				
R R R R R R R R R R R R R R R R R R R				
	0 2200			

Figure 15: Accumulation settings

Here is a comparison of two spectra one was collected with a exposure time of 0.179s and 10 accumulations (Figure 16) the other was collected with an exposure of 2 s and 1 accumulation (Figure 17).

Figure 17: Exposure of 2s and 1 accumulation

Collection of multiple spectra over a shorter exposure time can help elevate fluorescence.

The next acquisition mode available is stitching

Single Scan 🛛 🔻	
Single Scan	Ê
Accumulate	ſ
Stitching	
kinetic	Ľ
	Single Scan Accumulate Stitching

Left Limit 0.000

Right Limit 3400.000

Stitching allows collection across multiple spectral windows and stiches them together. Now the full spectrum of the polystyrene can be viewed at once. The past examples have used the 600 grove grating which has an approximate spectral window of 2600 cm-1. By using stitching any size window can be picked in the example below 3400 cm-1 was selected using the limit boxes (Figure 18).

🔯 Spectra					
SPECTROMETER				Detector for scan :	AndorCCDDetector 🔹
Andor iDus:					
	egion 0: 0.00 - 0.00		Functions		
	Functions				
Nº Units Left Right Sub1 Sub2	Pixels nm 1/cm Mass Centre	Nº Region Sub Function	FuncUnits	Title	
	Pixels nm 1/cm Width				
	Peak Value				
	Pixels nm 1/cm Peak Position				
	Skewness Value				
	Subtract	=			
	Save As Background Subtract Background				
F	-ull Spectrum Recording OPTIONS				
s	hift Speed V: 8.25 ▼ H: 0.033 (A-D N ▼				
	aser: 532,100 Central Pix: 538				
La	aser: 532.100 Central Pix: 538				
4		•			
Image Track V. bin Center: 63 🗘 Wi	idth: 126 🗘 🔲 Crop Mode Count: 1 🗘 Ac	quisition Mode Stitching	▼ LeftLimit 0.000	Right Limit 340	00.000
Acquisition time = 2.095880	Exposure Time 1.999990 s Min = 0.000030				
Live Mode Single Scan Raman Shift (1/cm) 🗸 🔒 🖉 🗱 Graphs : Stitchir— 🗸 💠 🕀 🗨 🕎 👹 📗 🏹 🗍 🎊					
Intensity, 103 Counts					
497				A	
				M	
	Unpart 1 1 property				
0 200 400 600		00 1800 2000 22	00 2400 2600	2800 3000	3200 3400
	Ran	nan Shift, 1/cm			

Figure 18: Stitching use to collect a 3400 cm-1 spectrum with 600 grove grating

Calibration Procedure

(For details on loading sample or spectrometer settings review other sections)

- 1. Load polystyrene sample
- 2. Focus laser on the surface of sample
- 3. Set mirror selection to 100%
- 4. ND filter to 0
- 5. Registration pin hole to 100um
- 6. Select the desired laser and grating
- 7. Acquisition time set to 1s
- 8. Collect a single spectrum
- 9. Center the 1001.4cm-1 peak in the center of the spectral window (the 1001.4 cm-1 peak is always has the highest intensity out of all the peaks in polystyrene, so even if it isn't at 1001.4 it can be identified)
- 10. Recollect the spectrum
- 11. Zoom in on the 1001.4cm-1 peak using the magnifying glass icon (Figure 1). 🗨

🛐 Spectra				
SPECTROMETER			Detector for scan : AndorCCDDetector 👻	
Andor iDus:				
Regions	Region 0: 0.00 - 0.00	Functions		
	Functions			
Nº Units Left Bight Sub1 Sub2	Area	Nº Region Sub Function FuncUnits	Title	
	Pixels nm 1/cm Mass Centre			
	Pixels nm 1/cm Width			
	Peak Value			
	Pixels nm 1/cm Peak Position			
	Skewness Value			
	Subtract			
	E			
	Save As Background Subtract Background			
	Full Spectrum Recording OPTIONS			
2	Shift Speed V: 8.25 - H: 0.033 (A-D N -			
	Laser: 532.100 Central Pix: 529			
× +				
Image Track V. bin Center: 63 🗘 W	Vidth: 126 🗘 🗖 Crop Mode Count: 1 🗘 Acquis	ition Mode Single Scan 🔻		
Acquisition time = 5.095900 Exposure Time 5.000000 s Min = 0.000030 s Set T (°C) -65 Cooler=-65.6				
Live Mode Single Scan Raman Shift (1/cm) 🗸 🖬 🖞 🛍 Graphs : Spectr — 🗸 🛟 🕄 🕎 🖗 🔣 🔀 🕅				
8 I I I I I I I I I I I I I I I I I I I	x=102	3.66 1/cm		
No. 1	A Y=272	41 Counts		
httensety, 103 Counts				
- Second Se				
Inter				
985 990 995 1000	اسار مارسا مارسا مارسا مارسا مارسا سایت اسا مارسا مارسا 1005 1010 1015 1020 1025	1030 1035 1040 1045 1050		
Raman Shift, 1/cm				

12. Measure the peak using the peak position icon (Figure 1).

Figure 1: Uncalibrated 1001.4 cm-1 polystyrene peak, measured at 1023.66 cm-1

13. To calibrate the peak the "central pix" (Figure 1) value needs to be adjusted, the represents a physical pixel on the CCD of the camera that means it must be an integer. By changing the "central pix" the calibration peak can be shifted towards 1001.4 cm-1 (Figure 2).

Spectra				
SPECTROMETER	Detector for scan : AndorCCDDetector 💌			
Andor iDus:				
Regions Region 0: 0.00 - 0.00	Functions			
Functions				
Nº Units Left Right Sub1 Sub2 Pixels nm 1/cm Mass Centre	Nº Region Sub Function FuncUnits Title			
Pixels nm 1/cm Width				
Peak Value				
Pixels nm 1/cm Peak Position				
Skewness Value				
Subtract				
	E			
Save As Background Subtract Background				
Full Spectrum Recording OPTIONS				
Shift Speed V: 8.25 - H: 0.033 (A-D N				
Laser: 532.100 Central Pix: 538				
<	-			
Image Track V. bin Center: 63 Crop Mode Count: 1 Count: 1 Count: 1 Count: 1				
Acquisition time = 5.095900 Exposure Time 5.000000 s Min = 0.000030 s Set T (°C) -65 € Cooler=-65.6				
Live Mode Single Scan Raman Shift (1/cm) 🗸 🖬 🖉 🚳 Graphs : Spectr — 🗸 🛟 🔁 🤤 🕎 🛄 🗔 🖓 🕅 🕅				
Sturgo CCI / A X=1000.47.1/cm Y=27581 Counts 996.5 997.0 997.5 998.0 998.5 999.0 999.5 1000.0 1000.5 1001.0 1001.5 1002.0 1002.5 1003.0 1003.5 1004.0 1004.5 1005.0 1005.5 Raman Shift, 1/cm				

Figure 2: This is the 1001.4 cm-1 peak of polystyrene calibrated, even though it is not the exact value this is as close as this grating and laser combination can achieve. This also speaks to the spectral resolution of this laser and grating combination.

14. Once the "central pix" is adjusted so that the 1001.4 cm-1 peak is a close to its value as it can, record the peak position, grating, laser and central pix value in the calibration log.